References and Notes
For recent reviews on organocatalysis,
see:
<A NAME="RG09709ST-1A">1a </A>
Berkessel A.
Gröger H.
Asymmetric
Organocatalysis
Wiley-VCH;
Weinheim:
2005.
<A NAME="RG09709ST-1B">1b </A>
Dalko PI.
Enantioselective Organocatalysis
Wiley-VCH;
Weinheim:
2007.
<A NAME="RG09709ST-1C">1c </A> Special issue on organocatalysis: Chem.
Rev.
2007,
107:
issue 12
<A NAME="RG09709ST-1D">1d </A>
Pellissier H.
Tetrahedron
2007,
63:
9267
<A NAME="RG09709ST-1E">1e </A>
Dondoni A.
Massi A.
Angew. Chem. Int. Ed.
2008,
47:
4638 ; Angew. Chem . 2008 , 120 , 4716
<A NAME="RG09709ST-1F">1f </A>
Kotsuki H.
Ikishima H.
Okuyama A.
Heterocycles
2008,
75:
493
<A NAME="RG09709ST-1G">1g </A>
Kotsuki H.
Ikishima H.
Okuyama A.
Heterocycles
2008,
75:
757
<A NAME="RG09709ST-1H">1h </A>
Enders D.
Narine AA.
J. Org. Chem.
2008,
73:
7857
<A NAME="RG09709ST-1I">1i </A>
Melchiorre P.
Marigo M.
Carlone A.
Bartoli G.
Angew. Chem. Int. Ed.
2008,
47:
6138 ; Angew. Chem . 2008 , 120 , 6232
For recent reviews on domino reactions,
see:
<A NAME="RG09709ST-2A">2a </A>
Tietze LF.
Chem. Rev.
1996,
96:
115
<A NAME="RG09709ST-2B">2b </A>
Tietze LF.
Brasche G.
Gericke K.
Domino Reactions in
Organic Synthesis
Wiley-VCH;
Weinheim:
2006.
<A NAME="RG09709ST-2C">2c </A>
Pellissier H.
Tetrahedron
2006,
62:
1619
<A NAME="RG09709ST-2D">2d </A>
Pellissier H.
Tetrahedron
2006,
62:
2143
<A NAME="RG09709ST-2E">2e </A>
Nicolaou KC.
Edmonds DJ.
Bulger PG.
Angew. Chem. Int. Ed.
2006,
45:
7134 ; Angew. Chem . 2006 , 118 , 7292
<A NAME="RG09709ST-2F">2f </A>
Chapman CJ.
Frost CG.
Synthesis
2007,
1
For reviews on organocatalytic domino
reactions, see:
<A NAME="RG09709ST-3A">3a </A>
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570 ; Angew. Chem . 2007 , 119 , 1590
<A NAME="RG09709ST-3B">3b </A>
Yu X.
Wang W.
Org. Biomol. Chem.
2008,
6:
2037
For selected examples of organocatalytic
domino reactions, see:
<A NAME="RG09709ST-4A">4a </A>
Yang JW.
Fonseca MTH.
List B.
J. Am. Chem. Soc.
2005,
127:
15036
<A NAME="RG09709ST-4B">4b </A>
Huang Y.
Walji AM.
Larsen CH.
MacMillan DWC.
J.
Am. Chem. Soc.
2005,
127:
15051
<A NAME="RG09709ST-4C">4c </A>
Enders D.
Hüttl MRM.
Grondal C.
Raabe G.
Nature
2006,
441:
861
<A NAME="RG09709ST-4D">4d </A>
Wang W.
Li H.
Wang J.
Zu L.
J. Am. Chem. Soc.
2006,
128:
10354
<A NAME="RG09709ST-4E">4e </A>
Enders D.
Hüttl MRM.
Runsink J.
Raabe G.
Wendt B.
Angew.
Chem. Int. Ed.
2007,
46:
467 ; Angew . Chem . 2007 , 119 , 471
<A NAME="RG09709ST-4F">4f </A>
Enders D.
Narine AA.
Benninghaus TR.
Raabe G.
Synlett
2007,
1667
<A NAME="RG09709ST-4G">4g </A>
Carlone A.
Cabrera S.
Marigo M.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2007,
46:
1101 ; Angew. Chem . 2007 , 119 , 1119
<A NAME="RG09709ST-4H">4h </A>
Hayashi Y.
Okano T.
Aratake S.
Hazelard D.
Angew. Chem. Int. Ed.
2007,
46:
4922 ; Angew. Chem . 2007 , 119 , 5010
<A NAME="RG09709ST-4I">4i </A>
Vicario JL.
Reboredo L.
Badía D.
Carrillo L.
Angew.
Chem. Int. Ed.
2007,
46:
5168 ; Angew. Chem . 2007 , 119 , 5260
<A NAME="RG09709ST-4J">4j </A>
Rueping M.
Sugiono E.
Merino E.
Angew.
Chem. Int. Ed.
2008,
47:
3046 ; Angew. Chem . 2008 , 120 , 3089
<A NAME="RG09709ST-4K">4k </A>
Enders D.
Wang C.
Bats JW.
Angew.
Chem. Int. Ed.
2008,
47:
7539 ; Angew . Chem . 2008 , 120 , 7649
<A NAME="RG09709ST-4L">4l </A>
Zhao G.-L.
Rios R.
Vesley J.
Eriksson L.
Córdova A.
Angew.
Chem. Int. Ed.
2008,
47:
8468 ; Angew . Chem . 2008 , 120 , 8596
<A NAME="RG09709ST-4M">4m </A>
Lu M.
Zhu D.
Lu Y.
Hou Y.
Tan B.
Zhong G.
Angew. Chem.
Int. Ed.
2008,
47:
10187 ; Angew . Chem . 2008 , 120 , 10341
<A NAME="RG09709ST-4N">4n </A>
Enders D.
Hüttl MRM.
Raabe G.
Bats
JW.
Adv.
Synth. Catal.
2008,
350:
267
<A NAME="RG09709ST-4O">4o </A>
Kotame P.
Hong B.-C.
Liao J.-H.
Tetrahedron
Lett.
2009,
50:
704
<A NAME="RG09709ST-4P">4p </A>
Franzén J.
Fisher A.
Angew. Chem.
Int. Ed.
2009,
48:
787 ; Angew . Chem . 2009 , 121 , 801
For reviews on organocatalytic Michael
additions, see:
<A NAME="RG09709ST-5A">5a </A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
<A NAME="RG09709ST-5B">5b </A>
Sulzer-Mossé S.
Alexakis A.
Chem. Commun.
2007,
3123
<A NAME="RG09709ST-5C">5c </A>
Vicario JL.
Badía D.
Carrillo L.
Synthesis
2007,
2065
<A NAME="RG09709ST-5D">5d </A>
Almaºi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
For selected examples of organocatalytic
nitroalkane-Michael additions with enals or enones as electrophile,
see:
<A NAME="RG09709ST-6A">6a </A>
Hanessian S.
Pham V.
Org. Lett.
2000,
2:
2975
<A NAME="RG09709ST-6B">6b </A>
Corey EJ.
Zhang F.-Y.
Org. Lett.
2000,
2:
4257
<A NAME="RG09709ST-6C">6c </A>
Halland N.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2002,
67:
8331
<A NAME="RG09709ST-6D">6d </A>
Tsogoeva SB.
Jagtap SB.
Ardemasova ZA.
Kalikhevich VN.
Eur.
J. Org. Chem.
2004,
4014
<A NAME="RG09709ST-6E">6e </A>
Vukalya B.
Varga S.
Csámpai A.
Soós T.
Org. Lett.
2005,
7:
1967
<A NAME="RG09709ST-6F">6f </A>
Mitchell CET.
Brenner SE.
Ley SV.
Chem. Commun.
2005,
5346
<A NAME="RG09709ST-6G">6g </A>
Prieto A.
Halland N.
Jørgensen KA.
Org. Lett.
2005,
7:
3897
<A NAME="RG09709ST-6H">6h </A>
Ooi T.
Takada S.
Fujioka S.
Maruoka K.
Org. Lett.
2005,
7:
5143
<A NAME="RG09709ST-6I">6i </A>
Mitchell CET.
Brenner SE.
García-Fortanet J.
Ley SV.
Org. Biomol. Chem.
2006,
4:
2039
<A NAME="RG09709ST-6J">6j </A>
Hanessian S.
Shao Z.
Warrier JS.
Org.
Lett.
2006,
8:
4787
<A NAME="RG09709ST-6K">6k </A>
Tsogoeva SB.
Jagtap SB.
Ardemasova ZA.
Tetrahedron: Asymmetry
2006,
17:
989
<A NAME="RG09709ST-6L">6l </A>
Gotoh H.
Ishikawa H.
Hayashi Y.
Org.
Lett.
2007,
9:
5307
<A NAME="RG09709ST-6M">6m </A>
Hojabri L.
Hartikka L.
Moghaddam FM.
Arvidsson PI.
Adv. Synth. Catal.
2007,
349:
740
<A NAME="RG09709ST-6N">6n </A>
Vakulya B.
Varga S.
Soós T.
J.
Org. Chem.
2008,
73:
3475
<A NAME="RG09709ST-6O">6o </A>
Li P.
Wang Y.
Liang X.
Ye J.
Chem. Commun.
2008,
3302
<A NAME="RG09709ST-6P">6p </A>
Zhong S.
Chen Y.
Petersen
JL.
Akhmedov NG.
Shi X.
Angew. Chem. Int. Ed.
2009,
48:
1279 ; Angew . Chem . 2009 , 121 , 1305
For selected examples of organocatalytic
domino reactions involving nitroalkane-Michael additions
with enals or enones as electrophiles, see refs 4c, 4e, 4g, 4n,
4o, and:
<A NAME="RG09709ST-7A">7a </A>
Reyes E.
Jiang H.
Milelli A.
Elsner P.
Hazell RG.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2007,
46:
9202 ; Angew . Chem . 2007 , 119 , 9362
<A NAME="RG09709ST-7B">7b </A>
Zhao G.-L.
Ibrahem I.
Dziedzic P.
Sun J.
Bonneau C.
Córdova A.
Chem. Eur. J.
2008,
14:
10007
<A NAME="RG09709ST-7C">7c </A>
Lv J.
Zhang J.
Lin Z.
Wang Y.
Chem. Eur. J.
2009,
15:
972
<A NAME="RG09709ST-7D">7d </A>
Zu L.
Zhang S.
Xie H.
Wang W.
Org. Lett.
2009,
11:
1627
<A NAME="RG09709ST-8">8 </A> For a review on organocatalytic aldol
reactions, see:
Guillena G.
Nájera C.
Ramón DJ.
Tetrahedron: Asymmetry
2007,
18:
2249
For selected examples of organocatalytic
intramolecular aldol reactions, see:
<A NAME="RG09709ST-9A">9a </A>
Pidathala C.
Hoang L.
Vignola N.
List B.
Angew. Chem. Int. Ed.
2003,
42:
2785 ; Angew . Chem . 2003 , 115 , 2891
<A NAME="RG09709ST-9B">9b </A>
Kriis K.
Kanger T.
Laars M.
Müürisepp A.-M.
Pehk T.
Lopp M.
Synlett
2006,
1699
<A NAME="RG09709ST-9C">9c </A>
Enders D.
Niemeier O.
Straver L.
Synlett
2006,
3399
<A NAME="RG09709ST-9D">9d </A>
Hayashi Y.
Sekiziwa H.
Yamaguchi J.
Gotoh H.
J. Org. Chem.
2007,
72:
6493
<A NAME="RG09709ST-9E">9e </A>
Yoshitomi Y.
Makino K.
Hamada Y.
Org.
Lett.
2007,
9:
2457
For selected examples of organocatalytic
domino reactions involving intramolecular aldol reactions, see refs
4c-g, 4n, 4o and:
<A NAME="RG09709ST-10A">10a </A>
Halland N.
Abruel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2004,
43:
1272 ; Angew. Chem . 2004 , 116 , 1292
<A NAME="RG09709ST-10B">10b </A>
Brandau B.
Maerten E.
Jørgensen KA.
J. Am. Chem. Soc.
2006,
128:
14986
<A NAME="RG09709ST-10C">10c </A>
Govender T.
Hojbri L.
Moghaddam FM.
Arvidsson PI.
Tetrahedron: Asymmetry
2006,
17:
1763
<A NAME="RG09709ST-10D">10d </A>
Wang J.
Li H.
Xie H.
Zu L.
Shen X.
Wang W.
Angew.
Chem. Int. Ed.
2007,
46:
9050 ; Angew. Chem . 2007 , 119 , 9208
<A NAME="RG09709ST-10E">10e </A>
Li H.
Wang J.
Xie H.
Zu L.
Jiang W.
Duesler EN.
Wang W.
Org.
Lett.
2007,
9:
965
<A NAME="RG09709ST-10F">10f </A>
Hong B.-C.
Nimje RY.
Sadani AA.
Liao J.-H.
Org. Lett.
2008,
10:
2345
<A NAME="RG09709ST-10G">10g </A>
Penon O.
Carlone A.
Mazzanti A.
Locatelli M.
Sambri L.
Bartoli G.
Melchiorre P.
Chem.
Eur. J.
2008,
14:
4788
For reviews on diphenylprolinol
TMS-ether, see:
<A NAME="RG09709ST-11A">11a </A>
Palomo C.
Mielgo A.
Angew. Chem. Int. Ed.
2006,
45:
7876 ; Angew . Chem . 2006 , 118 , 8042
<A NAME="RG09709ST-11B">11b </A>
Mielgo A.
Palomo C.
Chem. Asian J.
2008,
922
<A NAME="RG09709ST-12">12 </A>
Compound 3c :
CCDC-725063 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge
Crystallo-graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
<A NAME="RG09709ST-13">13 </A>
General Procedure :
To a solution of 2-(nitromethyl)-benzaldehyde (1 ;
1.0 mmol) and α,β-unsatured aldehyde
2 (1.1 mmol, 1.1 equiv) in Et2 O
(2 mL), was added (S )-di-phenylprolinol
TMS-ether [(S )-4 ;
0.05 mmol, 5 mol%]. The reaction mixture was stirred
at the temperature and for the time displayed in Table
[² ]
. Workup A: Direct
purification of the reaction mixture by flash chromatography afforded
3,4-dihydronaphthalenes 3 (pentane-Et2 O,
2-10:1). Workup B: Direct suction through a funnel
followed by washing with Et2 O afforded 3c . Workup
C: The reaction mixture was suctioned through a funnel and washed
with Et2 O. Purification of the obtained solid by flash
chromatography (silica gel, pentane-Et2 O, 1:3)
afforded 3d .
(3
R
,4
S
)-3-(2-Methoxyphenyl)-4-nitro-3,4-dihydro-naphthalene-2-carbaldehyde
(3c; Figure 2) : Isolated as a colorless solid (206 mg, 67%).
The ee (>99%) was determined by HPLC on a chiral
stationary phase [Chiralcel OD; n -heptane-i -PrOH (8:2); 1.0 mL/min, t
R
= 9.04 min(major),
10.29 min (minor, based on the racemic mixture)]; mp 182 ˚C; [α]D
²0 -482
(c 1.0, CHCl3 ); IR (KBr): 3310
(w), 3000 (w), 2946 (w), 2823 (m), 2728 (w), 2324 (w), 2268 (w),
2184 (w), 2048 (w), 1989 (w), 1942 (w), 1735 (w), 1701 (w), 1663
(vs), 1627 (s), 1599 (m), 1570 (m), 1538 (vs), 1489 (s), 1460 (s),
1435 (m), 1399 (s), 1358 (s), 1327 (m), 1289 (s), 1273 (s), 1245
(vs), 1192 (w), 1158 (vs), 1105 (s), 1052 (s), 1028 (s), 961 (w),
924 (s), 855 (m), 819 (m), 755 (vs), 704 (s) cm-¹ ; ¹ H
NMR (400 MHz, CDCl3 ): δ = 3.95 (s,
3 H, OCH3 ), 5.48 (br s, J = <2
Hz, 1 H, H-3), 5.62 (br s, J = <2
Hz, 1 H, H-4), 6.60 (dd, J = 7.6,
1.6 Hz, 1 H, H-6′), 6.65 (td, J = 7.6, 0.8 Hz,
1 H, H-5′), 6.91 (d, J = 7.6
Hz, 1 H, H-3′), 7.19 (td, J = 7.6,
1.6 Hz, 1 H, H-4′), 7.36-7.42
(m, 2 H, H-5,7), 7.48-7.54 (m, 2 H, H-6,8),
7.68 (s, 1 H, H-1), 9.73 (s, 1 H, CHO); ¹³ C
NMR (101 MHz, CDCl3 ): δ = 34.5 (C-3),
55.6 (OCH3 ), 86.4 (C-4), 110.8 (C-3′), 120.3
(C-5′), 122.5 (C-1′), 126.9 (C-6′), 128.0
(C-9), 129.0 (C-4′), 129.4 (C-8), 130.9 (C-6), 131.3 (C-5),
131.6 (C-7), 131.7 (C-10), 137.8 (C-2), 144.1 (C-1), 156.7 (C-2′),
190.7 (CHO); MS (EI, 70 eV): m /z (%) = 309.4 (5.8)
[M+ ], 277.3 (2.2), 263.3 (74),
245.3 (50), 235.4 (100), 231.4 (24), 202.3 (65), 189.3 (19), 176.3
(2.7), 165.3 (8.8), 155.3 (7.5), 152.3 (2.7), 127.3 (9.5), 117.6
(9.1), 101.3 (19), 94.8 (7.2), 83.1 (4.7), 77.4 (10), 57.4 (2.2),
51.4 (4.0), 43.3 (2.2); Anal. Calcd for C18 H15 NO4 :
C, 69.89; H, 4.89; N, 4.53. Found: C, 69.92; H, 4.94; N, 4.50.
Figure 2